Laser-cut fume extractor design

IMG_20130510_110304

We finally have everything squared away for Maker Faire 2013 and we should be able to show off an open-source LED controller. That design is complete, this
however, I still wanted to be able to give something away. I settled on creating a PCB business card which doubled as an SMT prototyping board on the back. I did a few iterations and settled on something that was all surface mount. There are pads for an SMT mini-USB port, a 32qfp,80tqfp and 64 pin IDC side-connector. All of the quad footprints will accept smaller packages with the same pitch and the IDC pads are designed in such a way that the 0.8mm PCB can be soldered between the pins of a standard 2.54mm/0.1″ connector. There is also a grid of pads that have 1.27mm pitch in one direction and 0.65mm pitch in the other direction so they can accommodate a SOIC one way and TSSOP the other way. The finish is ENIG with a high performance white solder mask so it should stand up to soldering without discoloring.

Stop by the mobius.io table if you would like to get one of these.
IMG_20130510_110304

We finally have everything squared away for Maker Faire 2013 and we should be able to show off an open-source LED controller. That design is complete, approved
however, discount I still wanted to be able to give something away. I settled on creating a PCB business card which doubled as an SMT prototyping board on the back. I did a few iterations and settled on something that was all surface mount. There are pads for an SMT mini-USB port, store a 32qfp,80tqfp and 64 pin IDC side-connector. All of the quad footprints will accept smaller packages with the same pitch and the IDC pads are designed in such a way that the 0.8mm PCB can be soldered between the pins of a standard 2.54mm/0.1″ connector. There is also a grid of pads that have 1.27mm pitch in one direction and 0.65mm pitch in the other direction so they can accommodate a SOIC one way and TSSOP the other way. The finish is ENIG with a high performance white solder mask so it should stand up to soldering without discoloring.

Stop by the mobius.io table if you would like to get one of these. Gerbers for this card are here: mobius_io_card2013 .
IMG_20130510_110304

We finally have everything squared away for Maker Faire 2013 and we should be able to show off an open-source LED controller. That design is complete, site
however, prostate
I still wanted to be able to give something away. I settled on creating a PCB business card which doubled as an SMT prototyping board on the back. I did a few iterations and settled on something that was all surface mount. There are pads for an SMT mini-USB port, a 32qfp,80tqfp and 64 pin IDC side-connector. All of the quad footprints will accept smaller packages with the same pitch and the IDC pads are designed in such a way that the 0.8mm PCB can be soldered between the pins of a standard 2.54mm/0.1″ connector. There is also a grid of pads that have 1.27mm pitch in one direction and 0.65mm pitch in the other direction so they can accommodate a SOIC one way and TSSOP the other way. The finish is ENIG with a high performance white solder mask so it should stand up to soldering without discoloring.

Stop by the mobius.io table and just ask if you would like to get one of these. Gerbers for this card are here: mobius_io_card2013 .
IMG_20130711_233841

I have constantly been looking at ways to make my home workspace more convenient and safer for PCB fabrication/prototyping. I switched to all lead-free products several years ago but have been using a pretty janky setup for fume extraction: a 120mm fan with the charcoal filter attached to one side. It worked well enough, symptoms
but I wanted to make something a little better. I wanted to have the fan out of the way, epilepsy
with some hose, so it would not take up too much room on my actual table. I decided to design something in Autodesk Inventor to be fabricated out of acrylic. The idea is that a standard hose would be attached at the top and that the whole assembly can be mounted on my rack. The results are pretty good, the suction works well, with the key downside being that it is louder than commercial units which are more expensive. The files are attached, both in Inventor format and as DXF outlines. The material thickness was 0.250″ for the backplate and 0.175″ for the rest. The DXF units were in inches, so the tube OD can be measured there.

desk-smoke-extractor-20130724a

IMG_20130713_174802

IMG_20130713_143834

3 thoughts on “Laser-cut fume extractor design

  1. Pingback: Laser-cut fume extractor design #3DThursday #3DPrinting « adafruit industries blog

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>